Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.905
Filtrar
1.
Biochem Soc Trans ; 52(2): 603-616, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572912

RESUMO

ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.


Assuntos
Trifosfato de Adenosina , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Animais , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
2.
Cell Rep Med ; 5(4): 101504, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593809

RESUMO

Targeted therapies have improved outcomes for certain cancer subtypes, but cytotoxic chemotherapy remains a mainstay for triple-negative breast cancer (TNBC). The epithelial-to-mesenchymal transition (EMT) is a developmental program co-opted by cancer cells that promotes metastasis and chemoresistance. There are no therapeutic strategies specifically targeting mesenchymal-like cancer cells. We report that the US Food and Drug Administration (FDA)-approved chemotherapeutic eribulin induces ZEB1-SWI/SNF-directed chromatin remodeling to reverse EMT that curtails the metastatic propensity of TNBC preclinical models. Eribulin induces mesenchymal-to-epithelial transition (MET) in primary TNBC in patients, but conventional chemotherapy does not. In the treatment-naive setting, but not after acquired resistance to other agents, eribulin sensitizes TNBC cells to subsequent treatment with other chemotherapeutics. These findings provide an epigenetic mechanism of action of eribulin, supporting its use early in the disease process for MET induction to prevent metastatic progression and chemoresistance. These findings warrant prospective clinical evaluation of the chemosensitizing effects of eribulin in the treatment-naive setting.


Assuntos
Antineoplásicos , Furanos , Cetonas , 60436 , Neoplasias de Mama Triplo Negativas , Estados Unidos , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Montagem e Desmontagem da Cromatina , Estudos Prospectivos , Antineoplásicos/uso terapêutico
3.
PLoS One ; 19(3): e0300255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512854

RESUMO

Chromodomain helicase DNA binding domain (CHD) proteins, including CHD7 and CHD8, remodel chromatin to enable transcriptional programs. Both proteins are important for proper neural development as heterozygous mutations in Chd7 and Chd8 are causative for CHARGE syndrome and correlated with autism spectrum disorders, respectively. Their roles in mature neurons are poorly understood despite influencing the expression of genes required for cell adhesion, neurotransmission, and synaptic plasticity. The Drosophila homolog of CHD7 and CHD8, Kismet (Kis), promotes neurotransmission, endocytosis, and larval locomotion. Endocytosis is essential in neurons for replenishing synaptic vesicles, maintaining protein localization, and preserving the size and composition of the presynaptic membrane. Several forms of endocytosis have been identified including clathrin-mediated endocytosis, which is coupled with neural activity and is the most prevalent form of synaptic endocytosis, and activity-dependent bulk endocytosis, which occurs during periods of intense stimulation. Kis modulates the expression of gene products involved in endocytosis including promoting shaggy/GSK3ß expression while restricting PI3K92E. kis mutants electrophysiologically phenocopy a liquid facets mutant in response to paradigms that induce clathrin-mediated endocytosis and activity-dependent bulk endocytosis. Further, kis mutants do not show further reductions in endocytosis when activity-dependent bulk endocytosis or clathrin-mediated endocytosis are pharmacologically inhibited. We find that Kis is important in postsynaptic muscle for proper endocytosis but the ATPase domain of Kis is dispensable for endocytosis. Collectively, our data indicate that Kis promotes both clathrin-mediated endocytosis and activity-dependent bulk endocytosis possibly by promoting transcription of several endocytic genes and maintaining the size of the synaptic vesicle pool.


Assuntos
Cromatina , Clatrina , Animais , Clatrina/metabolismo , Montagem e Desmontagem da Cromatina , Transmissão Sináptica/fisiologia , Drosophila/metabolismo , Endocitose/genética , DNA Helicases/genética , DNA Helicases/metabolismo
5.
Cell Rep ; 43(3): 113855, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427563

RESUMO

SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/genética , Fatores de Transcrição/metabolismo , Nucleossomos/genética , Montagem e Desmontagem da Cromatina
6.
Elife ; 132024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488335

RESUMO

To find nucleosomes, chromatin remodelers slide and hop along DNA, and their direction of approach affects the direction that nucleosomes slide in.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina
7.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
8.
Biochem Soc Trans ; 52(2): 793-802, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38451192

RESUMO

Eukaryotic genomes are compacted and organized into distinct three-dimensional (3D) structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These chromatin structures play an important role in the regulation of transcription and other nuclear processes. The molecular mechanisms that drive the formation of chromatin structures across scales and the relationship between chromatin structure and function remain incompletely understood. Because the processes involved are complex and interconnected, it is often challenging to dissect the underlying principles in the nuclear environment. Therefore, in vitro reconstitution systems provide a valuable approach to gain insight into the molecular mechanisms by which chromatin structures are formed and to determine the cause-consequence relationships between the processes involved. In this review, we give an overview of in vitro approaches that have been used to study chromatin structures across scales and how they have increased our understanding of the formation and function of these structures. We start by discussing in vitro studies that have given insight into the mechanisms of nucleosome positioning. Next, we discuss recent efforts to reconstitute larger-scale chromatin domains and loops and the resulting insights into the principles of genome organization. We conclude with an outlook on potential future applications of chromatin reconstitution systems and how they may contribute to answering open questions concerning chromatin architecture.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Genoma , Nucleossomos , Nucleossomos/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromatina/química , Humanos , Animais
9.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
10.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426493

RESUMO

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Animais , Feminino , Humanos , Camundongos , Gravidez , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Implantação do Embrião/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Útero
11.
Nucleus ; 15(1): 2325961, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465796

RESUMO

Cell migration involves the actin cytoskeleton, and recently recognized nuclear involvement. In this study, we explore the impact of chromatin remodeling on cell migration using NIH 3T3 cells and a scratch wound assay subjected to pharmacological interventions. We inhibit histone deacetylases (HDACs) with Trichostatin A (TSA) and methyltransferase EZH2 with GSK126 to modulate chromatin compaction. Our results indicate that chromatin modifications impair wound closure efficiency, reduce individual cell migration speed, and disrupt migration persistence. Live-cell imaging reveals dynamic intranuclear chromatin remodeling and nuclear shape parameters during migration, influenced by both small- and large-scale chromatin remodeling. The altered nuclear shape is associated with disrupted cell and nuclear mechanics, suggesting a crucial interplay between chromatin remodeling, nuclear mechanics and migration. These findings shed light on the intricate connection between intranuclear chromatin dynamics, nuclear mechanics, and cell migration, providing a basis for further investigations into the molecular mechanisms governing these processes.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Camundongos , Animais , Movimento Celular
12.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474021

RESUMO

Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Transição Epitelial-Mesenquimal , Fibrose , Montagem e Desmontagem da Cromatina
13.
Pharmacol Ther ; 256: 108610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367868

RESUMO

Accumulating evidence indicates that epigenetic events undergo deregulation in various cancer types, playing crucial roles in tumor development. Among the epigenetic factors involved in the epigenetic remodeling of chromatin, the chromodomain helicase DNA-binding protein (CHD) family frequently exhibits gain- or loss-of-function mutations in distinct cancer types. Therefore, targeting CHD remodelers holds the potential for antitumor treatment. In this review, we discuss epigenetic regulations of cancer development. We emphasize proteins in the CHD family, delving deeply into the intricate mechanisms governing their functions. Additionally, we provide an overview of current therapeutic strategies targeting CHD family members in preclinical trials. We further discuss the promising approaches that have demonstrated early signs of success in cancer treatment.


Assuntos
Cromatina , Neoplasias , Humanos , DNA Helicases/genética , DNA Helicases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Proteínas de Ligação a DNA/metabolismo , Montagem e Desmontagem da Cromatina , Epigênese Genética
14.
J Virol ; 98(3): e0156323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323811

RESUMO

Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE: Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.


Assuntos
Vírus da Dengue , HIV-1 , Células-Tronco Pluripotentes Induzidas , Macrófagos , Modelos Biológicos , Orthomyxoviridae , Virologia , Animais , Humanos , Diferenciação Celular/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/fisiologia , Pan troglodytes , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/fisiologia , Fibroblastos/citologia , Monócitos/citologia , Replicação Viral , Citometria de Fluxo , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , Tropismo Viral , Virologia/métodos , Biomarcadores/análise , Biomarcadores/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(8): e2312853121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349881

RESUMO

Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Curr Opin Genet Dev ; 85: 102162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401489

RESUMO

Aberrant chromatin regulation can promote the initiation and progression of human cancer. An improved understanding of such mechanisms has resulted in the identification of cancers with an enhanced dependency on specific chromatin regulatory proteins relative to nonmalignant cell types. Hence, targeting of such complexes with small molecules has significant therapeutic potential in oncology. In recent years, several drugs have been developed and evaluated in human cancer patients, which can influence tumor biology by reprogramming of chromatin structure. In this review, we summarize several of the known mechanisms that endow cancer cells with a powerful dependency on chromatin regulation that exceeds the requirements for normal tissue homeostasis. We also summarize the remarkable small-molecule inhibitors that exploit chromatin regulator dependencies with a clear therapeutic benefit in human cancer patients.


Assuntos
Cromatina , Neoplasias , Humanos , Cromatina/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição/genética , Montagem e Desmontagem da Cromatina , Índice Terapêutico
17.
Nat Plants ; 10(3): 374-380, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38413824

RESUMO

Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers1. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components2-5. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation6-11. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeFx-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeFx-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nucleossomos/metabolismo , Metilação de DNA , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA de Plantas/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Nat Commun ; 15(1): 1168, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326345

RESUMO

Prion-like domains (PLDs) are low-complexity protein sequences enriched within nucleic acid-binding proteins including those involved in transcription and RNA processing. PLDs of FUS and EWSR1 play key roles in recruiting chromatin remodeler mammalian SWI/SNF (mSWI/SNF) complex to oncogenic FET fusion protein condensates. Here, we show that disordered low-complexity domains of multiple SWI/SNF subunits are prion-like with a strong propensity to undergo intracellular phase separation. These PLDs engage in sequence-specific heterotypic interactions with the PLD of FUS in the dilute phase at sub-saturation conditions, leading to the formation of PLD co-condensates. In the dense phase, homotypic and heterotypic PLD interactions are highly cooperative, resulting in the co-mixing of individual PLD phases and forming spatially homogeneous condensates. Heterotypic PLD-mediated positive cooperativity in protein-protein interaction networks is likely to play key roles in the co-phase separation of mSWI/SNF complex with transcription factors containing homologous low-complexity domains.


Assuntos
Príons , Animais , Príons/metabolismo , Fatores de Transcrição/metabolismo , Cromatina , Mamíferos/genética , Montagem e Desmontagem da Cromatina
19.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380561

RESUMO

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Montagem e Desmontagem da Cromatina/genética , Camundongos , Animais , Organoides/metabolismo , Modelos Animais de Doenças
20.
Hum Pathol ; 144: 40-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307342

RESUMO

The SWItch/Sucrose Non-Fermentable (SWI/SNF) complex is a multimeric protein involved in transcription regulation and DNA damage repair. SWI/SNF complex abnormalities are observed in approximately 14-34 % of pancreatic ductal adenocarcinomas (PDACs). Herein, we evaluated the immunohistochemical expression of a subset of the SWI/SNF complex proteins (ARID1A, SMARCA4/BRG1, SMARCA2/BRM, and SMARCB1/INI1) within our PDAC tissue microarray to determine whether SWI/SNF loss is associated with any clinicopathologic features or patient survival in PDAC. In our cohort, 13 of 353 (3.7 %) PDACs showed deficient SWI/SNF complex expression, which included 11 (3.1 %) with ARID1A loss, 1 (0.3 %) with SMARCA4/BRG1 loss, and 1 (0.3 %) with SMARCA2/BRM loss. All cases were SMARCB1/INI1 proficient. The SWI/SNF-deficient PDACs were more frequently identified in older patients with a mean age of 71.6 years (SD = 7.78) compared to the SWI/SNF-proficient PDACs which occurred at a mean age of 65.2 years (SD = 10.95) (P = 0.013). The SWI/SNF-deficient PDACs were associated with higher histologic grade, compared to the SWI/SNF-proficient PDACs (P = 0.029). No other significant clinicopathologic differences were noted between SWI/SNF-deficient and SWI/SNF-proficient PDACs. On follow-up, no significant differences were seen for overall survival and progression-free survival between SWI/SNF-deficient and SWI/SNF-proficient PDACs (both with P > 0.05). In summary, SWI/SNF-deficient PDACs most frequently demonstrate ARID1A loss. SWI/SNF-deficient PDACs are associated with older age and higher histologic grade. No other significant associations among other clinicopathologic parameters were seen in SWI/SNF-deficient PDACs including survival.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Idoso , Montagem e Desmontagem da Cromatina , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...